Group III metabotropic glutamate receptors inhibit startle-mediating giant neurons in the caudal pontine reticular nucleus but do not mediate synaptic depression/short-term habituation of startle.
نویسندگان
چکیده
Short-term habituation is a basic form of learning that is analyzed in different species and using different behavioral models. Previous studies on mechanisms of short-term habituation yielded evidence for a potential role of group III metabotropic glutamate receptors (mGluRIIIs). Here we tested the hypothesis that mGluRIII mediate short-term habituation of startle in rats, combining electrophysiological experiments in vitro with behavioral studies in vivo. We applied different mGluRIII agonists and antagonists on rat brainstem slices while recording from startle-mediating neurons in the caudal pontine reticular nucleus (PnC) and monitoring synaptic depression presumably underlying habituation. Furthermore, we injected the mGluRIII antagonist (RS)-alpha-phosphonophenylglycine (MPPG) and the agonist L-(+)-2-amino-4-phosphonobutyric acid (L-AP4) into the PnC of rats in vivo and measured its effect on startle habituation. Our results show that activation of mGluRIIIs in the PnC strongly inhibits startle-mediating giant neurons in vitro. Accordingly, L-AP4 reduced startle responses in vivo. However, synaptic depression in the slice was not disrupted by mGluRIII antagonists or agonists. Correspondingly, the in vivo application of the mGluRIII antagonist MPPG failed to show any effect on short-term habituation of startle responses. We therefore conclude that mGluRs are expressed within the primary startle pathway and that they inhibit startle responses upon activation; however, this inhibition does not play any role in synaptic depression and short-term habituation of startle. This is in contrast to the role of mGluRIIIs in other forms of habituation and supports the notion that there are different mechanisms involved in habituation of sensory-evoked behaviors.
منابع مشابه
(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex
Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...
متن کاملAnatomical distribution and response patterns of reticular neurons active in relation to acoustic startle.
A population of reticulospinal neurons with short latency response to startle-inducing stimuli was identified in the nucleus reticularis pontis caudalis (NRPC) and nucleus gigantocellularis (NRGC) of the medial pontomedullary reticular formation. The threshold and magnitude of response to auditory stimuli was correlated in these cells and in the muscles mediating startle. Startle-related neuron...
متن کاملSomatostatin in the pontine reticular formation modulates fear potentiation of the acoustic startle response: an anatomical, electrophysiological, and behavioral study.
The amplitude of the acoustic startle response (ASP) in rats is increased in the presence of a cue that has previously been paired with an aversive stimulus such as a footshock. This phenomenon is called fear-potentiated startle and is a model to study the neuronal and neurochemical mechanisms of the acquisition and expression of fear. The present study investigated the role in fear-potentiated...
متن کاملGiant neurons in the rat reticular formation: a sensorimotor interface in the elementary acoustic startle circuit?
The mammalian acoustic startle response (ASR) is a relatively simple motor response that can be elicited by sudden and loud acoustic stimuli. The ASR shows several forms of plasticity, such as habituation, sensitization, and prepulse inhibition, thereby making it an interesting model for studying the underlying neuronal mechanisms. Among the neurons that compose the elementary startle circuit a...
متن کاملActivation of mGluR2/3 receptors in the ventro-rostral prefrontal cortex reverses sensorimotor gating deficits induced by systemic NMDA receptor antagonists.
Prepulse inhibition (PPI) of acoustic startle is an operational measure of sensorimotor gating, which is disrupted in schizophrenia. NMDA receptor (NMDAR) antagonist induced PPI disruption has become an important pharmacological model for schizophrenia; however, knowledge of the underlying mechanism remains incomplete. This study examines the role of NMDAR in the caudal pontine reticular nucleu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 31 شماره
صفحات -
تاریخ انتشار 2010